Defcon/hook_lib/asmjit/core/jitallocator.cpp

1310 lines
43 KiB
C++
Raw Normal View History

2023-11-26 08:54:06 -05:00
// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#include "../core/api-build_p.h"
#ifndef ASMJIT_NO_JIT
#include "../core/archtraits.h"
#include "../core/jitallocator.h"
#include "../core/osutils_p.h"
#include "../core/support.h"
#include "../core/virtmem.h"
#include "../core/zone.h"
#include "../core/zonelist.h"
#include "../core/zonetree.h"
ASMJIT_BEGIN_NAMESPACE
// JitAllocator - Constants
// ========================
//! Number of pools to use when `JitAllocatorOptions::kUseMultiplePools` is set.
//!
//! Each pool increases granularity twice to make memory management more
//! efficient. Ideal number of pools appears to be 3 to 4 as it distributes
//! small and large functions properly.
static constexpr uint32_t kJitAllocatorMultiPoolCount = 3;
//! Minimum granularity (and the default granularity for pool #0).
static constexpr uint32_t kJitAllocatorBaseGranularity = 64;
//! Maximum block size (32MB).
static constexpr uint32_t kJitAllocatorMaxBlockSize = 1024 * 1024 * 32;
// JitAllocator - Fill Pattern
// ===========================
static inline uint32_t JitAllocator_defaultFillPattern() noexcept {
// X86 and X86_64 - 4x 'int3' instruction.
if (ASMJIT_ARCH_X86)
return 0xCCCCCCCCu;
// Unknown...
return 0u;
}
// JitAllocator - BitVectorRangeIterator
// =====================================
template<typename T, uint32_t B>
class BitVectorRangeIterator {
public:
const T* _ptr;
size_t _idx;
size_t _end;
T _bitWord;
enum : uint32_t { kBitWordSize = Support::bitSizeOf<T>() };
enum : T { kXorMask = B == 0 ? Support::allOnes<T>() : T(0) };
ASMJIT_FORCE_INLINE BitVectorRangeIterator(const T* data, size_t numBitWords) noexcept {
init(data, numBitWords);
}
ASMJIT_FORCE_INLINE BitVectorRangeIterator(const T* data, size_t numBitWords, size_t start, size_t end) noexcept {
init(data, numBitWords, start, end);
}
ASMJIT_FORCE_INLINE void init(const T* data, size_t numBitWords) noexcept {
init(data, numBitWords, 0, numBitWords * kBitWordSize);
}
ASMJIT_FORCE_INLINE void init(const T* data, size_t numBitWords, size_t start, size_t end) noexcept {
ASMJIT_ASSERT(numBitWords >= (end + kBitWordSize - 1) / kBitWordSize);
DebugUtils::unused(numBitWords);
size_t idx = Support::alignDown(start, kBitWordSize);
const T* ptr = data + (idx / kBitWordSize);
T bitWord = 0;
if (idx < end)
bitWord = (*ptr ^ kXorMask) & (Support::allOnes<T>() << (start % kBitWordSize));
_ptr = ptr;
_idx = idx;
_end = end;
_bitWord = bitWord;
}
ASMJIT_FORCE_INLINE bool nextRange(size_t* rangeStart, size_t* rangeEnd, size_t rangeHint = std::numeric_limits<size_t>::max()) noexcept {
// Skip all empty BitWords.
while (_bitWord == 0) {
_idx += kBitWordSize;
if (_idx >= _end)
return false;
_bitWord = (*++_ptr) ^ kXorMask;
}
size_t i = Support::ctz(_bitWord);
*rangeStart = _idx + i;
_bitWord = ~(_bitWord ^ ~(Support::allOnes<T>() << i));
if (_bitWord == 0) {
*rangeEnd = Support::min(_idx + kBitWordSize, _end);
while (*rangeEnd - *rangeStart < rangeHint) {
_idx += kBitWordSize;
if (_idx >= _end)
break;
_bitWord = (*++_ptr) ^ kXorMask;
if (_bitWord != Support::allOnes<T>()) {
size_t j = Support::ctz(~_bitWord);
*rangeEnd = Support::min(_idx + j, _end);
_bitWord = _bitWord ^ ~(Support::allOnes<T>() << j);
break;
}
*rangeEnd = Support::min(_idx + kBitWordSize, _end);
_bitWord = 0;
continue;
}
return true;
}
else {
size_t j = Support::ctz(_bitWord);
*rangeEnd = Support::min(_idx + j, _end);
_bitWord = ~(_bitWord ^ ~(Support::allOnes<T>() << j));
return true;
}
}
};
// JitAllocator - Pool
// ===================
class JitAllocatorBlock;
class JitAllocatorPool {
public:
ASMJIT_NONCOPYABLE(JitAllocatorPool)
//! Double linked list of blocks.
ZoneList<JitAllocatorBlock> blocks;
//! Where to start looking first.
JitAllocatorBlock* cursor;
//! Count of blocks.
uint32_t blockCount;
//! Allocation granularity.
uint16_t granularity;
//! Log2(granularity).
uint8_t granularityLog2;
//! Count of empty blocks (either 0 or 1 as we won't keep more blocks empty).
uint8_t emptyBlockCount;
//! Number of bits reserved across all blocks.
size_t totalAreaSize;
//! Number of bits used across all blocks.
size_t totalAreaUsed;
//! Overhead of all blocks (in bytes).
size_t totalOverheadBytes;
inline JitAllocatorPool(uint32_t granularity) noexcept
: blocks(),
cursor(nullptr),
blockCount(0),
granularity(uint16_t(granularity)),
granularityLog2(uint8_t(Support::ctz(granularity))),
emptyBlockCount(0),
totalAreaSize(0),
totalAreaUsed(0),
totalOverheadBytes(0) {}
inline void reset() noexcept {
blocks.reset();
cursor = nullptr;
blockCount = 0;
totalAreaSize = 0;
totalAreaUsed = 0;
totalOverheadBytes = 0;
}
inline size_t byteSizeFromAreaSize(uint32_t areaSize) const noexcept { return size_t(areaSize) * granularity; }
inline uint32_t areaSizeFromByteSize(size_t size) const noexcept { return uint32_t((size + granularity - 1) >> granularityLog2); }
inline size_t bitWordCountFromAreaSize(uint32_t areaSize) const noexcept {
using namespace Support;
return alignUp<size_t>(areaSize, kBitWordSizeInBits) / kBitWordSizeInBits;
}
};
// JitAllocator - Block
// ====================
class JitAllocatorBlock : public ZoneTreeNodeT<JitAllocatorBlock>,
public ZoneListNode<JitAllocatorBlock> {
public:
ASMJIT_NONCOPYABLE(JitAllocatorBlock)
enum Flags : uint32_t {
//! Block is empty.
kFlagEmpty = 0x00000001u,
//! Block is dirty (largestUnusedArea, searchStart, searchEnd).
kFlagDirty = 0x00000002u,
//! Block is dual-mapped.
kFlagDualMapped = 0x00000004u
};
//! Link to the pool that owns this block.
JitAllocatorPool* _pool;
//! Virtual memory mapping - either single mapping (both pointers equal) or
//! dual mapping, where one pointer is Read+Execute and the second Read+Write.
VirtMem::DualMapping _mapping;
//! Virtual memory size (block size) [bytes].
size_t _blockSize;
//! Block flags.
uint32_t _flags;
//! Size of the whole block area (bit-vector size).
uint32_t _areaSize;
//! Used area (number of bits in bit-vector used).
uint32_t _areaUsed;
//! The largest unused continuous area in the bit-vector (or `areaSize` to initiate rescan).
uint32_t _largestUnusedArea;
//! Start of a search range (for unused bits).
uint32_t _searchStart;
//! End of a search range (for unused bits).
uint32_t _searchEnd;
//! Used bit-vector (0 = unused, 1 = used).
Support::BitWord* _usedBitVector;
//! Stop bit-vector (0 = don't care, 1 = stop).
Support::BitWord* _stopBitVector;
inline JitAllocatorBlock(
JitAllocatorPool* pool,
VirtMem::DualMapping mapping,
size_t blockSize,
uint32_t blockFlags,
Support::BitWord* usedBitVector,
Support::BitWord* stopBitVector,
uint32_t areaSize) noexcept
: ZoneTreeNodeT(),
_pool(pool),
_mapping(mapping),
_blockSize(blockSize),
_flags(blockFlags),
_areaSize(areaSize),
_areaUsed(0),
_largestUnusedArea(areaSize),
_searchStart(0),
_searchEnd(areaSize),
_usedBitVector(usedBitVector),
_stopBitVector(stopBitVector) {}
inline JitAllocatorPool* pool() const noexcept { return _pool; }
inline uint8_t* rxPtr() const noexcept { return static_cast<uint8_t*>(_mapping.rx); }
inline uint8_t* rwPtr() const noexcept { return static_cast<uint8_t*>(_mapping.rw); }
inline bool hasFlag(uint32_t f) const noexcept { return (_flags & f) != 0; }
inline void addFlags(uint32_t f) noexcept { _flags |= f; }
inline void clearFlags(uint32_t f) noexcept { _flags &= ~f; }
inline bool isDirty() const noexcept { return hasFlag(kFlagDirty); }
inline void makeDirty() noexcept { addFlags(kFlagDirty); }
inline size_t blockSize() const noexcept { return _blockSize; }
inline uint32_t areaSize() const noexcept { return _areaSize; }
inline uint32_t areaUsed() const noexcept { return _areaUsed; }
inline uint32_t areaAvailable() const noexcept { return _areaSize - _areaUsed; }
inline uint32_t largestUnusedArea() const noexcept { return _largestUnusedArea; }
inline void decreaseUsedArea(uint32_t value) noexcept {
_areaUsed -= value;
_pool->totalAreaUsed -= value;
}
inline void markAllocatedArea(uint32_t allocatedAreaStart, uint32_t allocatedAreaEnd) noexcept {
uint32_t allocatedAreaSize = allocatedAreaEnd - allocatedAreaStart;
// Mark the newly allocated space as occupied and also the sentinel.
Support::bitVectorFill(_usedBitVector, allocatedAreaStart, allocatedAreaSize);
Support::bitVectorSetBit(_stopBitVector, allocatedAreaEnd - 1, true);
// Update search region and statistics.
_pool->totalAreaUsed += allocatedAreaSize;
_areaUsed += allocatedAreaSize;
if (areaAvailable() == 0) {
_searchStart = _areaSize;
_searchEnd = 0;
_largestUnusedArea = 0;
clearFlags(kFlagDirty);
}
else {
if (_searchStart == allocatedAreaStart)
_searchStart = allocatedAreaEnd;
if (_searchEnd == allocatedAreaEnd)
_searchEnd = allocatedAreaStart;
addFlags(kFlagDirty);
}
}
inline void markReleasedArea(uint32_t releasedAreaStart, uint32_t releasedAreaEnd) noexcept {
uint32_t releasedAreaSize = releasedAreaEnd - releasedAreaStart;
// Update the search region and statistics.
_pool->totalAreaUsed -= releasedAreaSize;
_areaUsed -= releasedAreaSize;
_searchStart = Support::min(_searchStart, releasedAreaStart);
_searchEnd = Support::max(_searchEnd, releasedAreaEnd);
// Unmark occupied bits and also the sentinel.
Support::bitVectorClear(_usedBitVector, releasedAreaStart, releasedAreaSize);
Support::bitVectorSetBit(_stopBitVector, releasedAreaEnd - 1, false);
if (areaUsed() == 0) {
_searchStart = 0;
_searchEnd = _areaSize;
_largestUnusedArea = _areaSize;
addFlags(kFlagEmpty);
clearFlags(kFlagDirty);
}
else {
addFlags(kFlagDirty);
}
}
inline void markShrunkArea(uint32_t shrunkAreaStart, uint32_t shrunkAreaEnd) noexcept {
uint32_t shrunkAreaSize = shrunkAreaEnd - shrunkAreaStart;
// Shrunk area cannot start at zero as it would mean that we have shrunk the first
// block to zero bytes, which is not allowed as such block must be released instead.
ASMJIT_ASSERT(shrunkAreaStart != 0);
ASMJIT_ASSERT(shrunkAreaSize != 0);
// Update the search region and statistics.
_pool->totalAreaUsed -= shrunkAreaSize;
_areaUsed -= shrunkAreaSize;
_searchStart = Support::min(_searchStart, shrunkAreaStart);
_searchEnd = Support::max(_searchEnd, shrunkAreaEnd);
// Unmark the released space and move the sentinel.
Support::bitVectorClear(_usedBitVector, shrunkAreaStart, shrunkAreaSize);
Support::bitVectorSetBit(_stopBitVector, shrunkAreaEnd - 1, false);
Support::bitVectorSetBit(_stopBitVector, shrunkAreaStart - 1, true);
addFlags(kFlagDirty);
}
// RBTree default CMP uses '<' and '>' operators.
inline bool operator<(const JitAllocatorBlock& other) const noexcept { return rxPtr() < other.rxPtr(); }
inline bool operator>(const JitAllocatorBlock& other) const noexcept { return rxPtr() > other.rxPtr(); }
// Special implementation for querying blocks by `key`, which must be in `[BlockPtr, BlockPtr + BlockSize)` range.
inline bool operator<(const uint8_t* key) const noexcept { return rxPtr() + _blockSize <= key; }
inline bool operator>(const uint8_t* key) const noexcept { return rxPtr() > key; }
};
// JitAllocator - PrivateImpl
// ==========================
class JitAllocatorPrivateImpl : public JitAllocator::Impl {
public:
//! Lock for thread safety.
mutable Lock lock;
//! System page size (also a minimum block size).
uint32_t pageSize;
//! Number of active allocations.
size_t allocationCount;
//! Blocks from all pools in RBTree.
ZoneTree<JitAllocatorBlock> tree;
//! Allocator pools.
JitAllocatorPool* pools;
//! Number of allocator pools.
size_t poolCount;
inline JitAllocatorPrivateImpl(JitAllocatorPool* pools, size_t poolCount) noexcept
: JitAllocator::Impl {},
pageSize(0),
allocationCount(0),
pools(pools),
poolCount(poolCount) {}
inline ~JitAllocatorPrivateImpl() noexcept {}
};
static const JitAllocator::Impl JitAllocatorImpl_none {};
static const JitAllocator::CreateParams JitAllocatorParams_none {};
// JitAllocator - Utilities
// ========================
static inline JitAllocatorPrivateImpl* JitAllocatorImpl_new(const JitAllocator::CreateParams* params) noexcept {
VirtMem::Info vmInfo = VirtMem::info();
if (!params)
params = &JitAllocatorParams_none;
JitAllocatorOptions options = params->options;
uint32_t blockSize = params->blockSize;
uint32_t granularity = params->granularity;
uint32_t fillPattern = params->fillPattern;
// Setup pool count to [1..3].
size_t poolCount = 1;
if (Support::test(options, JitAllocatorOptions::kUseMultiplePools))
poolCount = kJitAllocatorMultiPoolCount;;
// Setup block size [64kB..256MB].
if (blockSize < 64 * 1024 || blockSize > 256 * 1024 * 1024 || !Support::isPowerOf2(blockSize))
blockSize = vmInfo.pageGranularity;
// Setup granularity [64..256].
if (granularity < 64 || granularity > 256 || !Support::isPowerOf2(granularity))
granularity = kJitAllocatorBaseGranularity;
// Setup fill-pattern.
if (uint32_t(options & JitAllocatorOptions::kCustomFillPattern) == 0)
fillPattern = JitAllocator_defaultFillPattern();
size_t size = sizeof(JitAllocatorPrivateImpl) + sizeof(JitAllocatorPool) * poolCount;
void* p = ::malloc(size);
if (ASMJIT_UNLIKELY(!p))
return nullptr;
JitAllocatorPool* pools = reinterpret_cast<JitAllocatorPool*>((uint8_t*)p + sizeof(JitAllocatorPrivateImpl));
JitAllocatorPrivateImpl* impl = new(p) JitAllocatorPrivateImpl(pools, poolCount);
impl->options = options;
impl->blockSize = blockSize;
impl->granularity = granularity;
impl->fillPattern = fillPattern;
impl->pageSize = vmInfo.pageSize;
for (size_t poolId = 0; poolId < poolCount; poolId++)
new(&pools[poolId]) JitAllocatorPool(granularity << poolId);
return impl;
}
static inline void JitAllocatorImpl_destroy(JitAllocatorPrivateImpl* impl) noexcept {
impl->~JitAllocatorPrivateImpl();
::free(impl);
}
static inline size_t JitAllocatorImpl_sizeToPoolId(const JitAllocatorPrivateImpl* impl, size_t size) noexcept {
size_t poolId = impl->poolCount - 1;
size_t granularity = size_t(impl->granularity) << poolId;
while (poolId) {
if (Support::alignUp(size, granularity) == size)
break;
poolId--;
granularity >>= 1;
}
return poolId;
}
static inline size_t JitAllocatorImpl_bitVectorSizeToByteSize(uint32_t areaSize) noexcept {
using Support::kBitWordSizeInBits;
return ((areaSize + kBitWordSizeInBits - 1u) / kBitWordSizeInBits) * sizeof(Support::BitWord);
}
static inline size_t JitAllocatorImpl_calculateIdealBlockSize(JitAllocatorPrivateImpl* impl, JitAllocatorPool* pool, size_t allocationSize) noexcept {
JitAllocatorBlock* last = pool->blocks.last();
size_t blockSize = last ? last->blockSize() : size_t(impl->blockSize);
if (blockSize < kJitAllocatorMaxBlockSize)
blockSize *= 2u;
if (allocationSize > blockSize) {
blockSize = Support::alignUp(allocationSize, impl->blockSize);
if (ASMJIT_UNLIKELY(blockSize < allocationSize))
return 0; // Overflown.
}
return blockSize;
}
ASMJIT_FAVOR_SPEED static void JitAllocatorImpl_fillPattern(void* mem, uint32_t pattern, size_t sizeInBytes) noexcept {
size_t n = sizeInBytes / 4u;
uint32_t* p = static_cast<uint32_t*>(mem);
for (size_t i = 0; i < n; i++)
p[i] = pattern;
}
// Allocate a new `JitAllocatorBlock` for the given `blockSize`.
//
// NOTE: The block doesn't have `kFlagEmpty` flag set, because the new block
// is only allocated when it's actually needed, so it would be cleared anyway.
static JitAllocatorBlock* JitAllocatorImpl_newBlock(JitAllocatorPrivateImpl* impl, JitAllocatorPool* pool, size_t blockSize) noexcept {
using Support::BitWord;
using Support::kBitWordSizeInBits;
uint32_t areaSize = uint32_t((blockSize + pool->granularity - 1) >> pool->granularityLog2);
uint32_t numBitWords = (areaSize + kBitWordSizeInBits - 1u) / kBitWordSizeInBits;
JitAllocatorBlock* block = static_cast<JitAllocatorBlock*>(::malloc(sizeof(JitAllocatorBlock)));
BitWord* bitWords = nullptr;
VirtMem::DualMapping virtMem {};
Error err = kErrorOutOfMemory;
if (block != nullptr)
bitWords = static_cast<BitWord*>(::malloc(size_t(numBitWords) * 2 * sizeof(BitWord)));
uint32_t blockFlags = 0;
if (bitWords != nullptr) {
if (Support::test(impl->options, JitAllocatorOptions::kUseDualMapping)) {
err = VirtMem::allocDualMapping(&virtMem, blockSize, VirtMem::MemoryFlags::kAccessRWX);
blockFlags |= JitAllocatorBlock::kFlagDualMapped;
}
else {
err = VirtMem::alloc(&virtMem.rx, blockSize, VirtMem::MemoryFlags::kAccessRWX);
virtMem.rw = virtMem.rx;
}
}
// Out of memory.
if (ASMJIT_UNLIKELY(!block || !bitWords || err != kErrorOk)) {
if (bitWords)
::free(bitWords);
if (block)
::free(block);
return nullptr;
}
// Fill the memory if the secure mode is enabled.
if (Support::test(impl->options, JitAllocatorOptions::kFillUnusedMemory)) {
VirtMem::ProtectJitReadWriteScope scope(virtMem.rw, blockSize);
JitAllocatorImpl_fillPattern(virtMem.rw, impl->fillPattern, blockSize);
}
memset(bitWords, 0, size_t(numBitWords) * 2 * sizeof(BitWord));
return new(block) JitAllocatorBlock(pool, virtMem, blockSize, blockFlags, bitWords, bitWords + numBitWords, areaSize);
}
static void JitAllocatorImpl_deleteBlock(JitAllocatorPrivateImpl* impl, JitAllocatorBlock* block) noexcept {
DebugUtils::unused(impl);
if (block->hasFlag(JitAllocatorBlock::kFlagDualMapped))
VirtMem::releaseDualMapping(&block->_mapping, block->blockSize());
else
VirtMem::release(block->rxPtr(), block->blockSize());
::free(block->_usedBitVector);
::free(block);
}
static void JitAllocatorImpl_insertBlock(JitAllocatorPrivateImpl* impl, JitAllocatorBlock* block) noexcept {
JitAllocatorPool* pool = block->pool();
if (!pool->cursor)
pool->cursor = block;
// Add to RBTree and List.
impl->tree.insert(block);
pool->blocks.append(block);
// Update statistics.
pool->blockCount++;
pool->totalAreaSize += block->areaSize();
pool->totalOverheadBytes += sizeof(JitAllocatorBlock) + JitAllocatorImpl_bitVectorSizeToByteSize(block->areaSize()) * 2u;
}
static void JitAllocatorImpl_removeBlock(JitAllocatorPrivateImpl* impl, JitAllocatorBlock* block) noexcept {
JitAllocatorPool* pool = block->pool();
// Remove from RBTree and List.
if (pool->cursor == block)
pool->cursor = block->hasPrev() ? block->prev() : block->next();
impl->tree.remove(block);
pool->blocks.unlink(block);
// Update statistics.
pool->blockCount--;
pool->totalAreaSize -= block->areaSize();
pool->totalOverheadBytes -= sizeof(JitAllocatorBlock) + JitAllocatorImpl_bitVectorSizeToByteSize(block->areaSize()) * 2u;
}
static void JitAllocatorImpl_wipeOutBlock(JitAllocatorPrivateImpl* impl, JitAllocatorBlock* block) noexcept {
if (block->hasFlag(JitAllocatorBlock::kFlagEmpty))
return;
JitAllocatorPool* pool = block->pool();
uint32_t areaSize = block->areaSize();
uint32_t granularity = pool->granularity;
size_t numBitWords = pool->bitWordCountFromAreaSize(areaSize);
VirtMem::protectJitMemory(VirtMem::ProtectJitAccess::kReadWrite);
if (Support::test(impl->options, JitAllocatorOptions::kFillUnusedMemory)) {
uint8_t* rwPtr = block->rwPtr();
BitVectorRangeIterator<Support::BitWord, 0> it(block->_usedBitVector, pool->bitWordCountFromAreaSize(block->areaSize()));
size_t rangeStart;
size_t rangeEnd;
while (it.nextRange(&rangeStart, &rangeEnd)) {
uint8_t* spanPtr = rwPtr + rangeStart * granularity;
size_t spanSize = (rangeEnd - rangeStart) * granularity;
JitAllocatorImpl_fillPattern(spanPtr, impl->fillPattern, spanSize);
VirtMem::flushInstructionCache(spanPtr, spanSize);
}
}
VirtMem::protectJitMemory(VirtMem::ProtectJitAccess::kReadExecute);
memset(block->_usedBitVector, 0, size_t(numBitWords) * sizeof(Support::BitWord));
memset(block->_stopBitVector, 0, size_t(numBitWords) * sizeof(Support::BitWord));
block->_areaUsed = 0;
block->_largestUnusedArea = areaSize;
block->_searchStart = 0;
block->_searchEnd = areaSize;
block->addFlags(JitAllocatorBlock::kFlagEmpty);
block->clearFlags(JitAllocatorBlock::kFlagDirty);
}
// JitAllocator - Construction & Destruction
// =========================================
JitAllocator::JitAllocator(const CreateParams* params) noexcept {
_impl = JitAllocatorImpl_new(params);
if (ASMJIT_UNLIKELY(!_impl))
_impl = const_cast<JitAllocator::Impl*>(&JitAllocatorImpl_none);
}
JitAllocator::~JitAllocator() noexcept {
if (_impl == &JitAllocatorImpl_none)
return;
reset(ResetPolicy::kHard);
JitAllocatorImpl_destroy(static_cast<JitAllocatorPrivateImpl*>(_impl));
}
// JitAllocator - Reset
// ====================
void JitAllocator::reset(ResetPolicy resetPolicy) noexcept {
if (_impl == &JitAllocatorImpl_none)
return;
JitAllocatorPrivateImpl* impl = static_cast<JitAllocatorPrivateImpl*>(_impl);
impl->tree.reset();
size_t poolCount = impl->poolCount;
for (size_t poolId = 0; poolId < poolCount; poolId++) {
JitAllocatorPool& pool = impl->pools[poolId];
JitAllocatorBlock* block = pool.blocks.first();
JitAllocatorBlock* blockToKeep = nullptr;
if (resetPolicy != ResetPolicy::kHard && uint32_t(impl->options & JitAllocatorOptions::kImmediateRelease) == 0) {
blockToKeep = block;
block = block->next();
}
while (block) {
JitAllocatorBlock* next = block->next();
JitAllocatorImpl_deleteBlock(impl, block);
block = next;
}
pool.reset();
if (blockToKeep) {
blockToKeep->_listNodes[0] = nullptr;
blockToKeep->_listNodes[1] = nullptr;
JitAllocatorImpl_wipeOutBlock(impl, blockToKeep);
JitAllocatorImpl_insertBlock(impl, blockToKeep);
pool.emptyBlockCount = 1;
}
}
}
// JitAllocator - Statistics
// =========================
JitAllocator::Statistics JitAllocator::statistics() const noexcept {
Statistics statistics;
statistics.reset();
if (ASMJIT_LIKELY(_impl != &JitAllocatorImpl_none)) {
JitAllocatorPrivateImpl* impl = static_cast<JitAllocatorPrivateImpl*>(_impl);
LockGuard guard(impl->lock);
size_t poolCount = impl->poolCount;
for (size_t poolId = 0; poolId < poolCount; poolId++) {
const JitAllocatorPool& pool = impl->pools[poolId];
statistics._blockCount += size_t(pool.blockCount);
statistics._reservedSize += size_t(pool.totalAreaSize) * pool.granularity;
statistics._usedSize += size_t(pool.totalAreaUsed) * pool.granularity;
statistics._overheadSize += size_t(pool.totalOverheadBytes);
}
statistics._allocationCount = impl->allocationCount;
}
return statistics;
}
// JitAllocator - Alloc & Release
// ==============================
Error JitAllocator::alloc(void** rxPtrOut, void** rwPtrOut, size_t size) noexcept {
if (ASMJIT_UNLIKELY(_impl == &JitAllocatorImpl_none))
return DebugUtils::errored(kErrorNotInitialized);
JitAllocatorPrivateImpl* impl = static_cast<JitAllocatorPrivateImpl*>(_impl);
constexpr uint32_t kNoIndex = std::numeric_limits<uint32_t>::max();
*rxPtrOut = nullptr;
*rwPtrOut = nullptr;
// Align to the minimum granularity by default.
size = Support::alignUp<size_t>(size, impl->granularity);
if (ASMJIT_UNLIKELY(size == 0))
return DebugUtils::errored(kErrorInvalidArgument);
if (ASMJIT_UNLIKELY(size > std::numeric_limits<uint32_t>::max() / 2))
return DebugUtils::errored(kErrorTooLarge);
LockGuard guard(impl->lock);
JitAllocatorPool* pool = &impl->pools[JitAllocatorImpl_sizeToPoolId(impl, size)];
uint32_t areaIndex = kNoIndex;
uint32_t areaSize = uint32_t(pool->areaSizeFromByteSize(size));
// Try to find the requested memory area in existing blocks.
JitAllocatorBlock* block = pool->blocks.first();
if (block) {
JitAllocatorBlock* initial = block;
do {
JitAllocatorBlock* next = block->hasNext() ? block->next() : pool->blocks.first();
if (block->areaAvailable() >= areaSize) {
if (block->isDirty() || block->largestUnusedArea() >= areaSize) {
BitVectorRangeIterator<Support::BitWord, 0> it(block->_usedBitVector, pool->bitWordCountFromAreaSize(block->areaSize()), block->_searchStart, block->_searchEnd);
size_t rangeStart = 0;
size_t rangeEnd = block->areaSize();
size_t searchStart = SIZE_MAX;
size_t largestArea = 0;
while (it.nextRange(&rangeStart, &rangeEnd, areaSize)) {
size_t rangeSize = rangeEnd - rangeStart;
if (rangeSize >= areaSize) {
areaIndex = uint32_t(rangeStart);
break;
}
searchStart = Support::min(searchStart, rangeStart);
largestArea = Support::max(largestArea, rangeSize);
}
if (areaIndex != kNoIndex)
break;
if (searchStart != SIZE_MAX) {
// Because we have iterated over the entire block, we can now mark the
// largest unused area that can be used to cache the next traversal.
size_t searchEnd = rangeEnd;
block->_searchStart = uint32_t(searchStart);
block->_searchEnd = uint32_t(searchEnd);
block->_largestUnusedArea = uint32_t(largestArea);
block->clearFlags(JitAllocatorBlock::kFlagDirty);
}
}
}
block = next;
} while (block != initial);
}
// Allocate a new block if there is no region of a required width.
if (areaIndex == kNoIndex) {
size_t blockSize = JitAllocatorImpl_calculateIdealBlockSize(impl, pool, size);
if (ASMJIT_UNLIKELY(!blockSize))
return DebugUtils::errored(kErrorOutOfMemory);
block = JitAllocatorImpl_newBlock(impl, pool, blockSize);
areaIndex = 0;
if (ASMJIT_UNLIKELY(!block))
return DebugUtils::errored(kErrorOutOfMemory);
JitAllocatorImpl_insertBlock(impl, block);
block->_searchStart = areaSize;
block->_largestUnusedArea = block->areaSize() - areaSize;
}
else if (block->hasFlag(JitAllocatorBlock::kFlagEmpty)) {
pool->emptyBlockCount--;
block->clearFlags(JitAllocatorBlock::kFlagEmpty);
}
// Update statistics.
impl->allocationCount++;
block->markAllocatedArea(areaIndex, areaIndex + areaSize);
// Return a pointer to the allocated memory.
size_t offset = pool->byteSizeFromAreaSize(areaIndex);
ASMJIT_ASSERT(offset <= block->blockSize() - size);
*rxPtrOut = block->rxPtr() + offset;
*rwPtrOut = block->rwPtr() + offset;
return kErrorOk;
}
Error JitAllocator::release(void* rxPtr) noexcept {
if (ASMJIT_UNLIKELY(_impl == &JitAllocatorImpl_none))
return DebugUtils::errored(kErrorNotInitialized);
if (ASMJIT_UNLIKELY(!rxPtr))
return DebugUtils::errored(kErrorInvalidArgument);
JitAllocatorPrivateImpl* impl = static_cast<JitAllocatorPrivateImpl*>(_impl);
LockGuard guard(impl->lock);
JitAllocatorBlock* block = impl->tree.get(static_cast<uint8_t*>(rxPtr));
if (ASMJIT_UNLIKELY(!block))
return DebugUtils::errored(kErrorInvalidState);
// Offset relative to the start of the block.
JitAllocatorPool* pool = block->pool();
size_t offset = (size_t)((uint8_t*)rxPtr - block->rxPtr());
// The first bit representing the allocated area and its size.
uint32_t areaIndex = uint32_t(offset >> pool->granularityLog2);
uint32_t areaEnd = uint32_t(Support::bitVectorIndexOf(block->_stopBitVector, areaIndex, true)) + 1;
uint32_t areaSize = areaEnd - areaIndex;
impl->allocationCount--;
block->markReleasedArea(areaIndex, areaEnd);
// Fill the released memory if the secure mode is enabled.
if (Support::test(impl->options, JitAllocatorOptions::kFillUnusedMemory)) {
uint8_t* spanPtr = block->rwPtr() + areaIndex * pool->granularity;
size_t spanSize = areaSize * pool->granularity;
VirtMem::ProtectJitReadWriteScope scope(spanPtr, spanSize);
JitAllocatorImpl_fillPattern(spanPtr, impl->fillPattern, spanSize);
}
// Release the whole block if it became empty.
if (block->areaUsed() == 0) {
if (pool->emptyBlockCount || Support::test(impl->options, JitAllocatorOptions::kImmediateRelease)) {
JitAllocatorImpl_removeBlock(impl, block);
JitAllocatorImpl_deleteBlock(impl, block);
}
else {
pool->emptyBlockCount++;
}
}
return kErrorOk;
}
Error JitAllocator::shrink(void* rxPtr, size_t newSize) noexcept {
if (ASMJIT_UNLIKELY(_impl == &JitAllocatorImpl_none))
return DebugUtils::errored(kErrorNotInitialized);
if (ASMJIT_UNLIKELY(!rxPtr))
return DebugUtils::errored(kErrorInvalidArgument);
if (ASMJIT_UNLIKELY(newSize == 0))
return release(rxPtr);
JitAllocatorPrivateImpl* impl = static_cast<JitAllocatorPrivateImpl*>(_impl);
LockGuard guard(impl->lock);
JitAllocatorBlock* block = impl->tree.get(static_cast<uint8_t*>(rxPtr));
if (ASMJIT_UNLIKELY(!block))
return DebugUtils::errored(kErrorInvalidArgument);
// Offset relative to the start of the block.
JitAllocatorPool* pool = block->pool();
size_t offset = (size_t)((uint8_t*)rxPtr - block->rxPtr());
// The first bit representing the allocated area and its size.
uint32_t areaStart = uint32_t(offset >> pool->granularityLog2);
bool isUsed = Support::bitVectorGetBit(block->_usedBitVector, areaStart);
if (ASMJIT_UNLIKELY(!isUsed))
return DebugUtils::errored(kErrorInvalidArgument);
uint32_t areaEnd = uint32_t(Support::bitVectorIndexOf(block->_stopBitVector, areaStart, true)) + 1;
uint32_t areaPrevSize = areaEnd - areaStart;
uint32_t areaShrunkSize = pool->areaSizeFromByteSize(newSize);
if (ASMJIT_UNLIKELY(areaShrunkSize > areaPrevSize))
return DebugUtils::errored(kErrorInvalidState);
uint32_t areaDiff = areaPrevSize - areaShrunkSize;
if (areaDiff) {
block->markShrunkArea(areaStart + areaShrunkSize, areaEnd);
// Fill released memory if the secure mode is enabled.
if (Support::test(impl->options, JitAllocatorOptions::kFillUnusedMemory))
JitAllocatorImpl_fillPattern(block->rwPtr() + (areaStart + areaShrunkSize) * pool->granularity, fillPattern(), areaDiff * pool->granularity);
}
return kErrorOk;
}
Error JitAllocator::query(void* rxPtr, void** rxPtrOut, void** rwPtrOut, size_t* sizeOut) const noexcept {
*rxPtrOut = nullptr;
*rwPtrOut = nullptr;
*sizeOut = 0u;
if (ASMJIT_UNLIKELY(_impl == &JitAllocatorImpl_none))
return DebugUtils::errored(kErrorNotInitialized);
JitAllocatorPrivateImpl* impl = static_cast<JitAllocatorPrivateImpl*>(_impl);
LockGuard guard(impl->lock);
JitAllocatorBlock* block = impl->tree.get(static_cast<uint8_t*>(rxPtr));
if (ASMJIT_UNLIKELY(!block))
return DebugUtils::errored(kErrorInvalidArgument);
// Offset relative to the start of the block.
JitAllocatorPool* pool = block->pool();
size_t offset = (size_t)((uint8_t*)rxPtr - block->rxPtr());
// The first bit representing the allocated area and its size.
uint32_t areaStart = uint32_t(offset >> pool->granularityLog2);
bool isUsed = Support::bitVectorGetBit(block->_usedBitVector, areaStart);
if (ASMJIT_UNLIKELY(!isUsed))
return DebugUtils::errored(kErrorInvalidArgument);
uint32_t areaEnd = uint32_t(Support::bitVectorIndexOf(block->_stopBitVector, areaStart, true)) + 1;
size_t byteOffset = pool->byteSizeFromAreaSize(areaStart);
size_t byteSize = pool->byteSizeFromAreaSize(areaEnd - areaStart);
*rxPtrOut = static_cast<uint8_t*>(block->_mapping.rx) + byteOffset;
*rwPtrOut = static_cast<uint8_t*>(block->_mapping.rw) + byteOffset;
*sizeOut = byteSize;
return kErrorOk;
}
// JitAllocator - Tests
// ====================
#if defined(ASMJIT_TEST)
// A pseudo random number generator based on a paper by Sebastiano Vigna:
// http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
class Random {
public:
// Constants suggested as `23/18/5`.
enum Steps : uint32_t {
kStep1_SHL = 23,
kStep2_SHR = 18,
kStep3_SHR = 5
};
inline explicit Random(uint64_t seed = 0) noexcept { reset(seed); }
inline Random(const Random& other) noexcept = default;
inline void reset(uint64_t seed = 0) noexcept {
// The number is arbitrary, it means nothing.
constexpr uint64_t kZeroSeed = 0x1F0A2BE71D163FA0u;
// Generate the state data by using splitmix64.
for (uint32_t i = 0; i < 2; i++) {
seed += 0x9E3779B97F4A7C15u;
uint64_t x = seed;
x = (x ^ (x >> 30)) * 0xBF58476D1CE4E5B9u;
x = (x ^ (x >> 27)) * 0x94D049BB133111EBu;
x = (x ^ (x >> 31));
_state[i] = x != 0 ? x : kZeroSeed;
}
}
inline uint32_t nextUInt32() noexcept {
return uint32_t(nextUInt64() >> 32);
}
inline uint64_t nextUInt64() noexcept {
uint64_t x = _state[0];
uint64_t y = _state[1];
x ^= x << kStep1_SHL;
y ^= y >> kStep3_SHR;
x ^= x >> kStep2_SHR;
x ^= y;
_state[0] = y;
_state[1] = x;
return x + y;
}
uint64_t _state[2];
};
// Helper class to verify that JitAllocator doesn't return addresses that overlap.
class JitAllocatorWrapper {
public:
// Address to a memory region of a given size.
class Range {
public:
inline Range(uint8_t* addr, size_t size) noexcept
: addr(addr),
size(size) {}
uint8_t* addr;
size_t size;
};
// Based on JitAllocator::Block, serves our purpose well...
class Record : public ZoneTreeNodeT<Record>,
public Range {
public:
inline Record(uint8_t* addr, size_t size)
: ZoneTreeNodeT<Record>(),
Range(addr, size) {}
inline bool operator<(const Record& other) const noexcept { return addr < other.addr; }
inline bool operator>(const Record& other) const noexcept { return addr > other.addr; }
inline bool operator<(const uint8_t* key) const noexcept { return addr + size <= key; }
inline bool operator>(const uint8_t* key) const noexcept { return addr > key; }
};
Zone _zone;
ZoneAllocator _heap;
ZoneTree<Record> _records;
JitAllocator _allocator;
explicit JitAllocatorWrapper(const JitAllocator::CreateParams* params) noexcept
: _zone(1024 * 1024),
_heap(&_zone),
_allocator(params) {}
void _insert(void* p_, size_t size) noexcept {
uint8_t* p = static_cast<uint8_t*>(p_);
uint8_t* pEnd = p + size - 1;
Record* record;
record = _records.get(p);
if (record)
EXPECT(record == nullptr, "Address [%p:%p] collides with a newly allocated [%p:%p]\n", record->addr, record->addr + record->size, p, p + size);
record = _records.get(pEnd);
if (record)
EXPECT(record == nullptr, "Address [%p:%p] collides with a newly allocated [%p:%p]\n", record->addr, record->addr + record->size, p, p + size);
record = _heap.newT<Record>(p, size);
EXPECT(record != nullptr, "Out of memory, cannot allocate 'Record'");
_records.insert(record);
}
void _remove(void* p) noexcept {
Record* record = _records.get(static_cast<uint8_t*>(p));
EXPECT(record != nullptr, "Address [%p] doesn't exist\n", p);
_records.remove(record);
_heap.release(record, sizeof(Record));
}
void* alloc(size_t size) noexcept {
void* rxPtr;
void* rwPtr;
Error err = _allocator.alloc(&rxPtr, &rwPtr, size);
EXPECT(err == kErrorOk, "JitAllocator failed to allocate %zu bytes\n", size);
_insert(rxPtr, size);
return rxPtr;
}
void release(void* p) noexcept {
_remove(p);
EXPECT(_allocator.release(p) == kErrorOk, "JitAllocator failed to release '%p'\n", p);
}
void shrink(void* p, size_t newSize) noexcept {
Record* record = _records.get(static_cast<uint8_t*>(p));
EXPECT(record != nullptr, "Address [%p] doesn't exist\n", p);
if (!newSize)
return release(p);
Error err = _allocator.shrink(p, newSize);
EXPECT(err == kErrorOk, "JitAllocator failed to shrink %p to %zu bytes\n", p, newSize);
record->size = newSize;
}
};
static void JitAllocatorTest_shuffle(void** ptrArray, size_t count, Random& prng) noexcept {
for (size_t i = 0; i < count; ++i)
std::swap(ptrArray[i], ptrArray[size_t(prng.nextUInt32() % count)]);
}
static void JitAllocatorTest_usage(JitAllocator& allocator) noexcept {
JitAllocator::Statistics stats = allocator.statistics();
INFO(" Block Count : %9llu [Blocks]" , (unsigned long long)(stats.blockCount()));
INFO(" Reserved (VirtMem): %9llu [Bytes]" , (unsigned long long)(stats.reservedSize()));
INFO(" Used (VirtMem): %9llu [Bytes] (%.1f%%)", (unsigned long long)(stats.usedSize()), stats.usedSizeAsPercent());
INFO(" Overhead (HeapMem): %9llu [Bytes] (%.1f%%)", (unsigned long long)(stats.overheadSize()), stats.overheadSizeAsPercent());
}
template<typename T, size_t kPatternSize, bool Bit>
static void BitVectorRangeIterator_testRandom(Random& rnd, size_t count) noexcept {
for (size_t i = 0; i < count; i++) {
T in[kPatternSize];
T out[kPatternSize];
for (size_t j = 0; j < kPatternSize; j++) {
in[j] = T(uint64_t(rnd.nextUInt32() & 0xFFu) * 0x0101010101010101);
out[j] = Bit == 0 ? Support::allOnes<T>() : T(0);
}
{
BitVectorRangeIterator<T, Bit> it(in, kPatternSize);
size_t rangeStart, rangeEnd;
while (it.nextRange(&rangeStart, &rangeEnd)) {
if (Bit)
Support::bitVectorFill(out, rangeStart, rangeEnd - rangeStart);
else
Support::bitVectorClear(out, rangeStart, rangeEnd - rangeStart);
}
}
for (size_t j = 0; j < kPatternSize; j++) {
EXPECT(in[j] == out[j], "Invalid pattern detected at [%zu] (%llX != %llX)", j, (unsigned long long)in[j], (unsigned long long)out[j]);
}
}
}
static void test_jit_allocator_alloc_release() noexcept {
size_t kCount = BrokenAPI::hasArg("--quick") ? 1000 : 100000;
struct TestParams {
const char* name;
JitAllocatorOptions options;
uint32_t blockSize;
uint32_t granularity;
};
static TestParams testParams[] = {
{ "Default", JitAllocatorOptions::kNone, 0, 0 },
{ "16MB blocks", JitAllocatorOptions::kNone, 16 * 1024 * 1024, 0 },
{ "256B granularity", JitAllocatorOptions::kNone, 0, 256 },
{ "kUseDualMapping", JitAllocatorOptions::kUseDualMapping, 0, 0 },
{ "kUseMultiplePools", JitAllocatorOptions::kUseMultiplePools, 0, 0 },
{ "kFillUnusedMemory", JitAllocatorOptions::kFillUnusedMemory, 0, 0 },
{ "kImmediateRelease", JitAllocatorOptions::kImmediateRelease, 0, 0 },
{ "kUseDualMapping | kFillUnusedMemory", JitAllocatorOptions::kUseDualMapping | JitAllocatorOptions::kFillUnusedMemory, 0, 0 }
};
INFO("BitVectorRangeIterator<uint32_t>");
{
Random rnd;
BitVectorRangeIterator_testRandom<uint32_t, 64, 0>(rnd, kCount);
}
INFO("BitVectorRangeIterator<uint64_t>");
{
Random rnd;
BitVectorRangeIterator_testRandom<uint64_t, 64, 0>(rnd, kCount);
}
for (uint32_t testId = 0; testId < ASMJIT_ARRAY_SIZE(testParams); testId++) {
INFO("JitAllocator(%s)", testParams[testId].name);
JitAllocator::CreateParams params {};
params.options = testParams[testId].options;
params.blockSize = testParams[testId].blockSize;
params.granularity = testParams[testId].granularity;
size_t fixedBlockSize = 256;
JitAllocatorWrapper wrapper(&params);
Random prng(100);
size_t i;
INFO(" Memory alloc/release test - %d allocations", kCount);
void** ptrArray = (void**)::malloc(sizeof(void*) * size_t(kCount));
EXPECT(ptrArray != nullptr,
"Couldn't allocate '%u' bytes for pointer-array", unsigned(sizeof(void*) * size_t(kCount)));
// Random blocks tests...
INFO(" Allocating random blocks...");
for (i = 0; i < kCount; i++)
ptrArray[i] = wrapper.alloc((prng.nextUInt32() % 1024) + 8);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Releasing all allocated blocks from the beginning...");
for (i = 0; i < kCount; i++)
wrapper.release(ptrArray[i]);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Allocating random blocks again...", kCount);
for (i = 0; i < kCount; i++)
ptrArray[i] = wrapper.alloc((prng.nextUInt32() % 1024) + 8);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Shuffling allocated blocks...");
JitAllocatorTest_shuffle(ptrArray, unsigned(kCount), prng);
INFO(" Releasing 50%% of allocated blocks...");
for (i = 0; i < kCount / 2; i++)
wrapper.release(ptrArray[i]);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Allocating 50%% more blocks again...");
for (i = 0; i < kCount / 2; i++)
ptrArray[i] = wrapper.alloc((prng.nextUInt32() % 1024) + 8);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Releasing all allocated blocks from the end...");
for (i = 0; i < kCount; i++)
wrapper.release(ptrArray[kCount - i - 1]);
JitAllocatorTest_usage(wrapper._allocator);
// Fixed blocks tests...
INFO(" Allocating %zuB blocks...", fixedBlockSize);
for (i = 0; i < kCount / 2; i++)
ptrArray[i] = wrapper.alloc(fixedBlockSize);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Shrinking each %zuB block to 1 byte", fixedBlockSize);
for (i = 0; i < kCount / 2; i++)
wrapper.shrink(ptrArray[i], 1);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Allocating more 64B blocks...", 64);
for (i = kCount / 2; i < kCount; i++)
ptrArray[i] = wrapper.alloc(64);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Releasing all blocks from the beginning...");
for (i = 0; i < kCount; i++)
wrapper.release(ptrArray[i]);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Allocating %zuB blocks...", fixedBlockSize);
for (i = 0; i < kCount; i++)
ptrArray[i] = wrapper.alloc(fixedBlockSize);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Shuffling allocated blocks...");
JitAllocatorTest_shuffle(ptrArray, unsigned(kCount), prng);
INFO(" Releasing 50%% of allocated blocks...");
for (i = 0; i < kCount / 2; i++)
wrapper.release(ptrArray[i]);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Allocating 50%% more %zuB blocks again...", fixedBlockSize);
for (i = 0; i < kCount / 2; i++)
ptrArray[i] = wrapper.alloc(fixedBlockSize);
JitAllocatorTest_usage(wrapper._allocator);
INFO(" Releasing all allocated blocks from the end...");
for (i = 0; i < kCount; i++)
wrapper.release(ptrArray[kCount - i - 1]);
JitAllocatorTest_usage(wrapper._allocator);
::free(ptrArray);
}
}
static void test_jit_allocator_query() noexcept {
JitAllocator allocator;
void* rxPtr = nullptr;
void* rwPtr = nullptr;
size_t size = 100;
EXPECT(allocator.alloc(&rxPtr, &rwPtr, size) == kErrorOk);
EXPECT(rxPtr != nullptr);
EXPECT(rwPtr != nullptr);
void* rxPtrQueried = nullptr;
void* rwPtrQueried = nullptr;
size_t sizeQueried;
EXPECT(allocator.query(rxPtr, &rxPtrQueried, &rwPtrQueried, &sizeQueried) == kErrorOk);
EXPECT(rxPtrQueried == rxPtr);
EXPECT(rwPtrQueried == rwPtr);
EXPECT(sizeQueried == Support::alignUp(size, allocator.granularity()));
}
UNIT(jit_allocator) {
test_jit_allocator_alloc_release();
test_jit_allocator_query();
}
#endif
ASMJIT_END_NAMESPACE
#endif