Defcon/hook_lib/asmjit/core/inst.h

773 lines
29 KiB
C
Raw Normal View History

2023-11-26 08:54:06 -05:00
// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_CORE_INST_H_INCLUDED
#define ASMJIT_CORE_INST_H_INCLUDED
#include "../core/cpuinfo.h"
#include "../core/operand.h"
#include "../core/string.h"
#include "../core/support.h"
ASMJIT_BEGIN_NAMESPACE
//! \addtogroup asmjit_instruction_db
//! \{
//! Describes an instruction id and modifiers used together with the id.
//!
//! Each architecture has a set of valid instructions indexed from 0. Instruction with 0 id is, however, a special
//! instruction that describes a "no instruction" or "invalid instruction". Different architectures can assign a.
//! different instruction to the same id, each architecture typicall has its own instructions indexed from 1.
//!
//! Instruction identifiers listed by architecture:
//!
//! - \ref x86::Inst (X86 and X86_64)
//! - \ref a64::Inst (AArch64)
typedef uint32_t InstId;
//! Instruction id parts.
//!
//! A mask that specifies a bit-layout of \ref InstId.
enum class InstIdParts : uint32_t {
// Common Masks
// ------------
//! Real id without any modifiers (always 16 least significant bits).
kRealId = 0x0000FFFFu,
//! Instruction is abstract (or virtual, IR, etc...).
kAbstract = 0x80000000u,
// ARM Specific
// ------------
//! AArch32 first data type, used by ASIMD instructions (`inst.dt.dt2`).
kA32_DT = 0x000F0000u,
//! AArch32 second data type, used by ASIMD instructions (`inst.dt.dt2`).
kA32_DT2 = 0x00F00000u,
//! AArch32/AArch64 condition code.
kARM_Cond = 0x78000000u
};
//! Instruction options.
//!
//! Instruction options complement instruction identifier and attributes.
enum class InstOptions : uint32_t {
//! No options.
kNone = 0,
//! Used internally by emitters for handling errors and rare cases.
kReserved = 0x00000001u,
//! Prevents following a jump during compilation (Compiler).
kUnfollow = 0x00000002u,
//! Overwrite the destination operand(s) (Compiler).
//!
//! Hint that is important for register liveness analysis. It tells the compiler that the destination operand will
//! be overwritten now or by adjacent instructions. Compiler knows when a register is completely overwritten by a
//! single instruction, for example you don't have to mark "movaps" or "pxor x, x", however, if a pair of
//! instructions is used and the first of them doesn't completely overwrite the content of the destination,
//! Compiler fails to mark that register as dead.
//!
//! X86 Specific
//! ------------
//!
//! - All instructions that always overwrite at least the size of the register the virtual-register uses, for
//! example "mov", "movq", "movaps" don't need the overwrite option to be used - conversion, shuffle, and
//! other miscellaneous instructions included.
//!
//! - All instructions that clear the destination register if all operands are the same, for example "xor x, x",
//! "pcmpeqb x x", etc...
//!
//! - Consecutive instructions that partially overwrite the variable until there is no old content require
//! `BaseCompiler::overwrite()` to be used. Some examples (not always the best use cases thought):
//!
//! - `movlps xmm0, ?` followed by `movhps xmm0, ?` and vice versa
//! - `movlpd xmm0, ?` followed by `movhpd xmm0, ?` and vice versa
//! - `mov al, ?` followed by `and ax, 0xFF`
//! - `mov al, ?` followed by `mov ah, al`
//! - `pinsrq xmm0, ?, 0` followed by `pinsrq xmm0, ?, 1`
//!
//! - If the allocated virtual register is used temporarily for scalar operations. For example if you allocate a
//! full vector like `x86::Compiler::newXmm()` and then use that vector for scalar operations you should use
//! `overwrite()` directive:
//!
//! - `sqrtss x, y` - only LO element of `x` is changed, if you don't
//! use HI elements, use `compiler.overwrite().sqrtss(x, y)`.
kOverwrite = 0x00000004u,
//! Emit short-form of the instruction.
kShortForm = 0x00000010u,
//! Emit long-form of the instruction.
kLongForm = 0x00000020u,
//! Conditional jump is likely to be taken.
kTaken = 0x00000040u,
//! Conditional jump is unlikely to be taken.
kNotTaken = 0x00000080u,
// X86 & X64 Options
// -----------------
//! Use ModMR instead of ModRM if applicable.
kX86_ModMR = 0x00000100u,
//! Use ModRM instead of ModMR if applicable.
kX86_ModRM = 0x00000200u,
//! Use 3-byte VEX prefix if possible (AVX) (must be 0x00000400).
kX86_Vex3 = 0x00000400u,
//! Use VEX prefix when both VEX|EVEX prefixes are available (HINT: AVX_VNNI).
kX86_Vex = 0x00000800u,
//! Use 4-byte EVEX prefix if possible (AVX-512) (must be 0x00001000).
kX86_Evex = 0x00001000u,
//! LOCK prefix (lock-enabled instructions only).
kX86_Lock = 0x00002000u,
//! REP prefix (string instructions only).
kX86_Rep = 0x00004000u,
//! REPNE prefix (string instructions only).
kX86_Repne = 0x00008000u,
//! XACQUIRE prefix (only allowed instructions).
kX86_XAcquire = 0x00010000u,
//! XRELEASE prefix (only allowed instructions).
kX86_XRelease = 0x00020000u,
//! AVX-512: embedded-rounding {er} and implicit {sae}.
kX86_ER = 0x00040000u,
//! AVX-512: suppress-all-exceptions {sae}.
kX86_SAE = 0x00080000u,
//! AVX-512: round-to-nearest (even) {rn-sae} (bits 00).
kX86_RN_SAE = 0x00000000u,
//! AVX-512: round-down (toward -inf) {rd-sae} (bits 01).
kX86_RD_SAE = 0x00200000u,
//! AVX-512: round-up (toward +inf) {ru-sae} (bits 10).
kX86_RU_SAE = 0x00400000u,
//! AVX-512: round-toward-zero (truncate) {rz-sae} (bits 11).
kX86_RZ_SAE = 0x00600000u,
//! AVX-512: Use zeroing {k}{z} instead of merging {k}.
kX86_ZMask = 0x00800000u,
//! AVX-512: Mask to get embedded rounding bits (2 bits).
kX86_ERMask = kX86_RZ_SAE,
//! AVX-512: Mask of all possible AVX-512 options except EVEX prefix flag.
kX86_AVX512Mask = 0x00FC0000u,
//! Force REX.B and/or VEX.B field (X64 only).
kX86_OpCodeB = 0x01000000u,
//! Force REX.X and/or VEX.X field (X64 only).
kX86_OpCodeX = 0x02000000u,
//! Force REX.R and/or VEX.R field (X64 only).
kX86_OpCodeR = 0x04000000u,
//! Force REX.W and/or VEX.W field (X64 only).
kX86_OpCodeW = 0x08000000u,
//! Force REX prefix (X64 only).
kX86_Rex = 0x40000000u,
//! Invalid REX prefix (set by X86 or when AH|BH|CH|DH regs are used on X64).
kX86_InvalidRex = 0x80000000u
};
ASMJIT_DEFINE_ENUM_FLAGS(InstOptions)
//! Instruction control flow.
enum class InstControlFlow : uint32_t {
//! Regular instruction.
kRegular = 0u,
//! Unconditional jump.
kJump = 1u,
//! Conditional jump (branch).
kBranch = 2u,
//! Function call.
kCall = 3u,
//! Function return.
kReturn = 4u,
//! Maximum value of `InstType`.
kMaxValue = kReturn
};
//! Hint that is used when both input operands to the instruction are the same.
//!
//! Provides hints to the instrution RW query regarding special cases in which two or more operands are the same
//! registers. This is required by instructions such as XOR, AND, OR, SUB, etc... These hints will influence the
//! RW operations query.
enum class InstSameRegHint : uint8_t {
//! No special handling.
kNone = 0,
//! Operands become read-only, the operation doesn't change the content - `X & X` and similar.
kRO = 1,
//! Operands become write-only, the content of the input(s) don't matter - `X ^ X`, `X - X`, and similar.
kWO = 2
};
//! Instruction id, options, and extraReg in a single structure. This structure exists mainly to simplify analysis
//! and validation API that requires `BaseInst` and `Operand[]` array.
class BaseInst {
public:
//! \name Members
//! \{
//! Instruction id with modifiers.
InstId _id;
//! Instruction options.
InstOptions _options;
//! Extra register used by the instruction (either REP register or AVX-512 selector).
RegOnly _extraReg;
enum Id : uint32_t {
//! Invalid or uninitialized instruction id.
kIdNone = 0x00000000u,
//! Abstract instruction (BaseBuilder and BaseCompiler).
kIdAbstract = 0x80000000u
};
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new BaseInst instance with `id` and `options` set.
//!
//! Default values of `id` and `options` are zero, which means 'none' instruction. Such instruction is guaranteed
//! to never exist for any architecture supported by AsmJit.
inline explicit BaseInst(InstId instId = 0, InstOptions options = InstOptions::kNone) noexcept
: _id(instId),
_options(options),
_extraReg() {}
inline BaseInst(InstId instId, InstOptions options, const RegOnly& extraReg) noexcept
: _id(instId),
_options(options),
_extraReg(extraReg) {}
inline BaseInst(InstId instId, InstOptions options, const BaseReg& extraReg) noexcept
: _id(instId),
_options(options),
_extraReg { extraReg.signature(), extraReg.id() } {}
//! \}
//! \name Instruction id and modifiers
//! \{
//! Returns the instruction id with modifiers.
inline InstId id() const noexcept { return _id; }
//! Sets the instruction id and modiiers from `id`.
inline void setId(InstId id) noexcept { _id = id; }
//! Resets the instruction id and modifiers to zero, see \ref kIdNone.
inline void resetId() noexcept { _id = 0; }
//! Returns a real instruction id that doesn't contain any modifiers.
inline InstId realId() const noexcept { return _id & uint32_t(InstIdParts::kRealId); }
template<InstIdParts kPart>
inline uint32_t getInstIdPart() const noexcept {
return (uint32_t(_id) & uint32_t(kPart)) >> Support::ConstCTZ<uint32_t(kPart)>::value;
}
template<InstIdParts kPart>
inline void setInstIdPart(uint32_t value) noexcept {
_id = (_id & ~uint32_t(kPart)) | (value << Support::ConstCTZ<uint32_t(kPart)>::value);
}
//! \}
//! \name Instruction Options
//! \{
inline InstOptions options() const noexcept { return _options; }
inline bool hasOption(InstOptions option) const noexcept { return Support::test(_options, option); }
inline void setOptions(InstOptions options) noexcept { _options = options; }
inline void addOptions(InstOptions options) noexcept { _options |= options; }
inline void clearOptions(InstOptions options) noexcept { _options &= ~options; }
inline void resetOptions() noexcept { _options = InstOptions::kNone; }
//! \}
//! \name Extra Register
//! \{
inline bool hasExtraReg() const noexcept { return _extraReg.isReg(); }
inline RegOnly& extraReg() noexcept { return _extraReg; }
inline const RegOnly& extraReg() const noexcept { return _extraReg; }
inline void setExtraReg(const BaseReg& reg) noexcept { _extraReg.init(reg); }
inline void setExtraReg(const RegOnly& reg) noexcept { _extraReg.init(reg); }
inline void resetExtraReg() noexcept { _extraReg.reset(); }
//! \}
//! \name ARM Specific
//! \{
inline arm::CondCode armCondCode() const noexcept { return (arm::CondCode)getInstIdPart<InstIdParts::kARM_Cond>(); }
inline void setArmCondCode(arm::CondCode cc) noexcept { setInstIdPart<InstIdParts::kARM_Cond>(uint32_t(cc)); }
//! \}
//! \name Statics
//! \{
static inline constexpr InstId composeARMInstId(uint32_t id, arm::CondCode cc) noexcept {
return id | (uint32_t(cc) << Support::ConstCTZ<uint32_t(InstIdParts::kARM_Cond)>::value);
}
static inline constexpr InstId extractRealId(uint32_t id) noexcept {
return id & uint32_t(InstIdParts::kRealId);
}
static inline constexpr arm::CondCode extractARMCondCode(uint32_t id) noexcept {
return (arm::CondCode)((uint32_t(id) & uint32_t(InstIdParts::kARM_Cond)) >> Support::ConstCTZ<uint32_t(InstIdParts::kARM_Cond)>::value);
}
//! \}
};
//! CPU read/write flags used by \ref InstRWInfo.
//!
//! These flags can be used to get a basic overview about CPU specifics flags used by instructions.
enum class CpuRWFlags : uint32_t {
//! No flags.
kNone = 0x00000000u,
// Common RW Flags (0x000000FF)
// ----------------------------
//! Carry flag.
kCF = 0x00000001u,
//! Signed overflow flag.
kOF = 0x00000002u,
//! Sign flag (negative/sign, if set).
kSF = 0x00000004u,
//! Zero and/or equality flag (1 if zero/equal).
kZF = 0x00000008u,
// X86 Specific RW Flags (0xFFFFFF00)
// ----------------------------------
//! Carry flag (X86, X86_64).
kX86_CF = kCF,
//! Overflow flag (X86, X86_64).
kX86_OF = kOF,
//! Sign flag (X86, X86_64).
kX86_SF = kSF,
//! Zero flag (X86, X86_64).
kX86_ZF = kZF,
//! Adjust flag (X86, X86_64).
kX86_AF = 0x00000100u,
//! Parity flag (X86, X86_64).
kX86_PF = 0x00000200u,
//! Direction flag (X86, X86_64).
kX86_DF = 0x00000400u,
//! Interrupt enable flag (X86, X86_64).
kX86_IF = 0x00000800u,
//! Alignment check flag (X86, X86_64).
kX86_AC = 0x00001000u,
//! FPU C0 status flag (X86, X86_64).
kX86_C0 = 0x00010000u,
//! FPU C1 status flag (X86, X86_64).
kX86_C1 = 0x00020000u,
//! FPU C2 status flag (X86, X86_64).
kX86_C2 = 0x00040000u,
//! FPU C3 status flag (X86, X86_64).
kX86_C3 = 0x00080000u
};
ASMJIT_DEFINE_ENUM_FLAGS(CpuRWFlags)
//! Operand read/write flags describe how the operand is accessed and some additional features.
enum class OpRWFlags {
//! No flags.
kNone = 0,
//! Operand is read.
kRead = 0x00000001u,
//! Operand is written.
kWrite = 0x00000002u,
//! Operand is both read and written.
kRW = 0x00000003u,
//! Register operand can be replaced by a memory operand.
kRegMem = 0x00000004u,
//! The register must be allocated to the index of the previous register + 1.
//!
//! This flag is used by all architectures to describe instructions that use consecutive registers, where only the
//! first one is encoded in the instruction, and the others are just a sequence that starts with the first one. On
//! X86/X86_64 architecture this is used by instructions such as V4FMADDPS, V4FMADDSS, V4FNMADDPS, V4FNMADDSS,
//! VP4DPWSSD, VP4DPWSSDS, VP2INTERSECTD, and VP2INTERSECTQ. On ARM/AArch64 this is used by vector load and store
//! instructions that can load or store multiple registers at once.
kConsecutive = 0x00000008u,
//! The `extendByteMask()` represents a zero extension.
kZExt = 0x00000010u,
//! Register operand must use \ref OpRWInfo::physId().
kRegPhysId = 0x00000100u,
//! Base register of a memory operand must use \ref OpRWInfo::physId().
kMemPhysId = 0x00000200u,
//! This memory operand is only used to encode registers and doesn't access memory.
//!
//! X86 Specific
//! ------------
//!
//! Instructions that use such feature include BNDLDX, BNDSTX, and LEA.
kMemFake = 0x000000400u,
//! Base register of the memory operand will be read.
kMemBaseRead = 0x00001000u,
//! Base register of the memory operand will be written.
kMemBaseWrite = 0x00002000u,
//! Base register of the memory operand will be read & written.
kMemBaseRW = 0x00003000u,
//! Index register of the memory operand will be read.
kMemIndexRead = 0x00004000u,
//! Index register of the memory operand will be written.
kMemIndexWrite = 0x00008000u,
//! Index register of the memory operand will be read & written.
kMemIndexRW = 0x0000C000u,
//! Base register of the memory operand will be modified before the operation.
kMemBasePreModify = 0x00010000u,
//! Base register of the memory operand will be modified after the operation.
kMemBasePostModify = 0x00020000u
};
ASMJIT_DEFINE_ENUM_FLAGS(OpRWFlags)
// Don't remove these asserts. Read/Write flags are used extensively
// by Compiler and they must always be compatible with constants below.
static_assert(uint32_t(OpRWFlags::kRead) == 0x1, "OpRWFlags::kRead flag must be 0x1");
static_assert(uint32_t(OpRWFlags::kWrite) == 0x2, "OpRWFlags::kWrite flag must be 0x2");
static_assert(uint32_t(OpRWFlags::kRegMem) == 0x4, "OpRWFlags::kRegMem flag must be 0x4");
//! Read/Write information related to a single operand, used by \ref InstRWInfo.
struct OpRWInfo {
//! \name Members
//! \{
//! Read/Write flags.
OpRWFlags _opFlags;
//! Physical register index, if required.
uint8_t _physId;
//! Size of a possible memory operand that can replace a register operand.
uint8_t _rmSize;
//! If non-zero, then this is a consecutive lead register, and the value describes how many registers follow.
uint8_t _consecutiveLeadCount;
//! Reserved for future use.
uint8_t _reserved[1];
//! Read bit-mask where each bit represents one byte read from Reg/Mem.
uint64_t _readByteMask;
//! Write bit-mask where each bit represents one byte written to Reg/Mem.
uint64_t _writeByteMask;
//! Zero/Sign extend bit-mask where each bit represents one byte written to Reg/Mem.
uint64_t _extendByteMask;
//! \}
//! \name Reset
//! \{
//! Resets this operand information to all zeros.
inline void reset() noexcept { memset(this, 0, sizeof(*this)); }
//! Resets this operand info (resets all members) and set common information
//! to the given `opFlags`, `regSize`, and possibly `physId`.
inline void reset(OpRWFlags opFlags, uint32_t regSize, uint32_t physId = BaseReg::kIdBad) noexcept {
_opFlags = opFlags;
_physId = uint8_t(physId);
_rmSize = Support::test(opFlags, OpRWFlags::kRegMem) ? uint8_t(regSize) : uint8_t(0);
_consecutiveLeadCount = 0;
_resetReserved();
uint64_t mask = Support::lsbMask<uint64_t>(regSize);
_readByteMask = Support::test(opFlags, OpRWFlags::kRead) ? mask : uint64_t(0);
_writeByteMask = Support::test(opFlags, OpRWFlags::kWrite) ? mask : uint64_t(0);
_extendByteMask = 0;
}
inline void _resetReserved() noexcept {
_reserved[0] = 0;
}
//! \}
//! \name Operand Flags
//! \{
//! Returns operand flags.
inline OpRWFlags opFlags() const noexcept { return _opFlags; }
//! Tests whether operand flags contain the given `flag`.
inline bool hasOpFlag(OpRWFlags flag) const noexcept { return Support::test(_opFlags, flag); }
//! Adds the given `flags` to operand flags.
inline void addOpFlags(OpRWFlags flags) noexcept { _opFlags |= flags; }
//! Removes the given `flags` from operand flags.
inline void clearOpFlags(OpRWFlags flags) noexcept { _opFlags &= ~flags; }
//! Tests whether this operand is read from.
inline bool isRead() const noexcept { return hasOpFlag(OpRWFlags::kRead); }
//! Tests whether this operand is written to.
inline bool isWrite() const noexcept { return hasOpFlag(OpRWFlags::kWrite); }
//! Tests whether this operand is both read and write.
inline bool isReadWrite() const noexcept { return (_opFlags & OpRWFlags::kRW) == OpRWFlags::kRW; }
//! Tests whether this operand is read only.
inline bool isReadOnly() const noexcept { return (_opFlags & OpRWFlags::kRW) == OpRWFlags::kRead; }
//! Tests whether this operand is write only.
inline bool isWriteOnly() const noexcept { return (_opFlags & OpRWFlags::kRW) == OpRWFlags::kWrite; }
//! Returns the type of a lead register, which is followed by consecutive registers.
inline uint32_t consecutiveLeadCount() const noexcept { return _consecutiveLeadCount; }
//! Tests whether this operand is Reg/Mem
//!
//! Reg/Mem operands can use either register or memory.
inline bool isRm() const noexcept { return hasOpFlag(OpRWFlags::kRegMem); }
//! Tests whether the operand will be zero extended.
inline bool isZExt() const noexcept { return hasOpFlag(OpRWFlags::kZExt); }
//! \}
//! \name Memory Flags
//! \{
//! Tests whether this is a fake memory operand, which is only used, because of encoding. Fake memory operands do
//! not access any memory, they are only used to encode registers.
inline bool isMemFake() const noexcept { return hasOpFlag(OpRWFlags::kMemFake); }
//! Tests whether the instruction's memory BASE register is used.
inline bool isMemBaseUsed() const noexcept { return hasOpFlag(OpRWFlags::kMemBaseRW); }
//! Tests whether the instruction reads from its BASE registers.
inline bool isMemBaseRead() const noexcept { return hasOpFlag(OpRWFlags::kMemBaseRead); }
//! Tests whether the instruction writes to its BASE registers.
inline bool isMemBaseWrite() const noexcept { return hasOpFlag(OpRWFlags::kMemBaseWrite); }
//! Tests whether the instruction reads and writes from/to its BASE registers.
inline bool isMemBaseReadWrite() const noexcept { return (_opFlags & OpRWFlags::kMemBaseRW) == OpRWFlags::kMemBaseRW; }
//! Tests whether the instruction only reads from its BASE registers.
inline bool isMemBaseReadOnly() const noexcept { return (_opFlags & OpRWFlags::kMemBaseRW) == OpRWFlags::kMemBaseRead; }
//! Tests whether the instruction only writes to its BASE registers.
inline bool isMemBaseWriteOnly() const noexcept { return (_opFlags & OpRWFlags::kMemBaseRW) == OpRWFlags::kMemBaseWrite; }
//! Tests whether the instruction modifies the BASE register before it uses it to calculate the target address.
inline bool isMemBasePreModify() const noexcept { return hasOpFlag(OpRWFlags::kMemBasePreModify); }
//! Tests whether the instruction modifies the BASE register after it uses it to calculate the target address.
inline bool isMemBasePostModify() const noexcept { return hasOpFlag(OpRWFlags::kMemBasePostModify); }
//! Tests whether the instruction's memory INDEX register is used.
inline bool isMemIndexUsed() const noexcept { return hasOpFlag(OpRWFlags::kMemIndexRW); }
//! Tests whether the instruction reads the INDEX registers.
inline bool isMemIndexRead() const noexcept { return hasOpFlag(OpRWFlags::kMemIndexRead); }
//! Tests whether the instruction writes to its INDEX registers.
inline bool isMemIndexWrite() const noexcept { return hasOpFlag(OpRWFlags::kMemIndexWrite); }
//! Tests whether the instruction reads and writes from/to its INDEX registers.
inline bool isMemIndexReadWrite() const noexcept { return (_opFlags & OpRWFlags::kMemIndexRW) == OpRWFlags::kMemIndexRW; }
//! Tests whether the instruction only reads from its INDEX registers.
inline bool isMemIndexReadOnly() const noexcept { return (_opFlags & OpRWFlags::kMemIndexRW) == OpRWFlags::kMemIndexRead; }
//! Tests whether the instruction only writes to its INDEX registers.
inline bool isMemIndexWriteOnly() const noexcept { return (_opFlags & OpRWFlags::kMemIndexRW) == OpRWFlags::kMemIndexWrite; }
//! \}
//! \name Physical Register ID
//! \{
//! Returns a physical id of the register that is fixed for this operand.
//!
//! Returns \ref BaseReg::kIdBad if any register can be used.
inline uint32_t physId() const noexcept { return _physId; }
//! Tests whether \ref physId() would return a valid physical register id.
inline bool hasPhysId() const noexcept { return _physId != BaseReg::kIdBad; }
//! Sets physical register id, which would be fixed for this operand.
inline void setPhysId(uint32_t physId) noexcept { _physId = uint8_t(physId); }
//! \}
//! \name Reg/Mem Information
//! \{
//! Returns Reg/Mem size of the operand.
inline uint32_t rmSize() const noexcept { return _rmSize; }
//! Sets Reg/Mem size of the operand.
inline void setRmSize(uint32_t rmSize) noexcept { _rmSize = uint8_t(rmSize); }
//! \}
//! \name Read & Write Masks
//! \{
//! Returns read mask.
inline uint64_t readByteMask() const noexcept { return _readByteMask; }
//! Returns write mask.
inline uint64_t writeByteMask() const noexcept { return _writeByteMask; }
//! Returns extend mask.
inline uint64_t extendByteMask() const noexcept { return _extendByteMask; }
//! Sets read mask.
inline void setReadByteMask(uint64_t mask) noexcept { _readByteMask = mask; }
//! Sets write mask.
inline void setWriteByteMask(uint64_t mask) noexcept { _writeByteMask = mask; }
//! Sets externd mask.
inline void setExtendByteMask(uint64_t mask) noexcept { _extendByteMask = mask; }
//! \}
};
//! Flags used by \ref InstRWInfo.
enum class InstRWFlags : uint32_t {
//! No flags.
kNone = 0x00000000u,
//! Describes a move operation.
//!
//! This flag is used by RA to eliminate moves that are guaranteed to be moves only.
kMovOp = 0x00000001u
};
ASMJIT_DEFINE_ENUM_FLAGS(InstRWFlags)
//! Read/Write information of an instruction.
struct InstRWInfo {
//! \name Members
//! \{
//! Instruction flags (there are no flags at the moment, this field is reserved).
InstRWFlags _instFlags;
//! CPU flags read.
CpuRWFlags _readFlags;
//! CPU flags written.
CpuRWFlags _writeFlags;
//! Count of operands.
uint8_t _opCount;
//! CPU feature required for replacing register operand with memory operand.
uint8_t _rmFeature;
//! Reserved for future use.
uint8_t _reserved[18];
//! Read/Write onfo of extra register (rep{} or kz{}).
OpRWInfo _extraReg;
//! Read/Write info of instruction operands.
OpRWInfo _operands[Globals::kMaxOpCount];
//! \}
//! \name Commons
//! \{
//! Resets this RW information to all zeros.
inline void reset() noexcept { memset(this, 0, sizeof(*this)); }
//! \}
//! \name Instruction Flags
//! \{
//! Returns flags associated with the instruction, see \ref InstRWFlags.
inline InstRWFlags instFlags() const noexcept { return _instFlags; }
//! Tests whether the instruction flags contain `flag`.
inline bool hasInstFlag(InstRWFlags flag) const noexcept { return Support::test(_instFlags, flag); }
//! Tests whether the instruction flags contain \ref InstRWFlags::kMovOp.
inline bool isMovOp() const noexcept { return hasInstFlag(InstRWFlags::kMovOp); }
//! \}
//! \name CPU Flags Information
//! \{
//! Returns a mask of CPU flags read.
inline CpuRWFlags readFlags() const noexcept { return _readFlags; }
//! Returns a mask of CPU flags written.
inline CpuRWFlags writeFlags() const noexcept { return _writeFlags; }
//! \}
//! \name Reg/Mem Information
//! \{
//! Returns the CPU feature required to replace a register operand with memory operand. If the returned feature is
//! zero (none) then this instruction either doesn't provide memory operand combination or there is no extra CPU
//! feature required.
//!
//! X86 Specific
//! ------------
//!
//! Some AVX+ instructions may require extra features for replacing registers with memory operands, for example
//! VPSLLDQ instruction only supports `vpslldq reg, reg, imm` combination on AVX/AVX2 capable CPUs and requires
//! AVX-512 for `vpslldq reg, mem, imm` combination.
inline uint32_t rmFeature() const noexcept { return _rmFeature; }
//! \}
//! \name Operand Read/Write Information
//! \{
//! Returns RW information of extra register operand (extraReg).
inline const OpRWInfo& extraReg() const noexcept { return _extraReg; }
//! Returns RW information of all instruction's operands.
inline const OpRWInfo* operands() const noexcept { return _operands; }
//! Returns RW information of the operand at the given `index`.
inline const OpRWInfo& operand(size_t index) const noexcept {
ASMJIT_ASSERT(index < Globals::kMaxOpCount);
return _operands[index];
}
//! Returns the number of operands this instruction has.
inline uint32_t opCount() const noexcept { return _opCount; }
//! \}
};
//! Validation flags that can be used with \ref InstAPI::validate().
enum class ValidationFlags : uint32_t {
//! No flags.
kNone = 0,
//! Allow virtual registers in the instruction.
kEnableVirtRegs = 0x01u
};
ASMJIT_DEFINE_ENUM_FLAGS(ValidationFlags)
//! Instruction API.
namespace InstAPI {
#ifndef ASMJIT_NO_TEXT
//! Appends the name of the instruction specified by `instId` and `instOptions` into the `output` string.
//!
//! \note Instruction options would only affect instruction prefix & suffix, other options would be ignored.
//! If `instOptions` is zero then only raw instruction name (without any additional text) will be appended.
ASMJIT_API Error instIdToString(Arch arch, InstId instId, String& output) noexcept;
//! Parses an instruction name in the given string `s`. Length is specified by `len` argument, which can be
//! `SIZE_MAX` if `s` is known to be null terminated.
//!
//! Returns the parsed instruction id or \ref BaseInst::kIdNone if no such instruction exists.
ASMJIT_API InstId stringToInstId(Arch arch, const char* s, size_t len) noexcept;
#endif // !ASMJIT_NO_TEXT
#ifndef ASMJIT_NO_VALIDATION
//! Validates the given instruction considering the given `validationFlags`.
ASMJIT_API Error validate(Arch arch, const BaseInst& inst, const Operand_* operands, size_t opCount, ValidationFlags validationFlags = ValidationFlags::kNone) noexcept;
#endif // !ASMJIT_NO_VALIDATION
#ifndef ASMJIT_NO_INTROSPECTION
//! Gets Read/Write information of the given instruction.
ASMJIT_API Error queryRWInfo(Arch arch, const BaseInst& inst, const Operand_* operands, size_t opCount, InstRWInfo* out) noexcept;
//! Gets CPU features required by the given instruction.
ASMJIT_API Error queryFeatures(Arch arch, const BaseInst& inst, const Operand_* operands, size_t opCount, CpuFeatures* out) noexcept;
#endif // !ASMJIT_NO_INTROSPECTION
} // {InstAPI}
//! \}
ASMJIT_END_NAMESPACE
#endif // ASMJIT_CORE_INST_H_INCLUDED